Data Structures and Fundamentals of Programming

Problem #1
In C++ implement a generic stack class, using a linked list and dynamic memory allocation. It should be generic on the type of data stored in the stack. The stack data structure should look something like the following:

$\text{TOS} \rightarrow X_1 \rightarrow X_2 \rightarrow \ldots \rightarrow X_n$

where X_1 is the top of the stack and X_n is the node at the bottom of the stack. Besides stack, you will most likely want another generic class or struct called node. Along with the class definition(s), you must implement the following methods for the generic stack class:

- Default constructor
- Destructor
- Copy-constructor
- push which takes a parameter of type item and creates a new node that is added to the top of the stack.
- pop which removes a node from the stack and returns its contents.

Note: Your implementation can NOT use STL or any other libraries (standard or otherwise).

Problem #2
A) Convert the following infix expressions into postfix and prefix.

\[a \times b - c \times d \times e \times (d - f) - g \]
\[a \times (b + c) \times (d - e) - d \times f \]

B) Give the Preorder, Postorder, and Inorder traversals of the tree below:
Problem #3
Write a method that concatenates two strings (as defined below) and returns the resulting new string.

class string
{
 public:
 string();
 string operator+(string) const;

 private:
 char s[256]; //null terminated character array
};