Void Traversal for Guaranteed Delivery in Geometric Routing

Mikhail Nesterenko and Adnan Vora
Computer Science Department
Kent State University
Kent, OH, 44242
mikhail@cs.kent.edu, avora@cs.kent.edu

Abstract

Geometric routing algorithms like GFG (GPSR) are lightweight, scalable algorithms that can be used to route in resource-constrained ad hoc wireless networks. However, these algorithms require the network topology to be a unit-disk graph. This causes the network diameter to be artificially large and increases the route length. In order to remedy this, we propose a void traversal algorithm that works on arbitrary geometric graphs. We describe how to use this algorithm for geometric routing with guaranteed delivery.

1 Introduction

Geometric routing is a promising approach for message transmission in ad hoc wireless networks. Unlike traditional ad hoc routing, geometric routing algorithms have no control messages or routing tables, the nodes maintain no information about data messages between transmissions and each data message is of constant size. Hence, geometric routing is quite scalable. Geometric routing is particularly appropriate for wireless sensor networks. Networked sensors usually have limited resources for routing information, yet many applications for sensor networks require ad hoc configurations of large scale.

In geometric routing, each node knows its own geographic coordinates. Each node is also aware of the coordinates of the other nodes and links in a part of the network around it. The coordinates are either obtained from GPS receivers or a localization algorithm [2]. The source node of a data message has the coordinates of the target but the source does not know the complete route to it. The source selects one of its neighbors and sends the message to it. After getting the message the receiver forwards the message further. The objective of the algorithm is to deliver the message to the target.

The simplest version of a geometric routing algorithm is greedy routing. In greedy routing the source, as well as each individual node, examines its neighboring nodes and forwards the message to the one that is the closest to the target. Unfortunately, the greedy routing algorithm fails if the message recipient is local minimum: all its neighbors are further away from the target than the node itself. In compass routing [7], the next hop is selected such that the angle between the direction to the next hop node and to the destination is minimal. However, compass routing live locks even on planar graphs.

GFG [1] (also known as GPSR [6]) is the first algorithm that guarantees delivery of the message. The algorithm is designed for planar graphs. It uses greedy routing. To get out of a local minimum GFG sequentially traverses the faces of the planar graph that intersect the line between the source and target. GFG assumes that the original communications graph is a unit-disk graph. For this graph, the authors construct its Gabriel subgraph. This subgraph preserves the connectivity of the original graph and it can be constructed locally by each node. Datta et al [3] propose further improvements to GFG. Kuhn et
al [8] present a similar algorithm with asymptotically optimal worst-case performance.

Our contribution. The guaranteed delivery geometric routing algorithms, of which we are aware, have the following shortcoming. Their local minimum avoidance part runs over a planar graph. The efficient construction of a planar graph requires that the original graph is unit-disk. As recent work [4] demonstrates this assumption is not realistic for connection topologies formed by common networked sensors such as Berkeley motes [5]. Motes’ radio propagation patterns prove to be quite intricate.

In this paper we demonstrate how to carry out geometric routing with guaranteed delivery on arbitrary non-planar graphs. The foundation of our approach is a void traversal algorithm. We describe algorithms VOID-1 and VOID-2 that incorporate void traversal for routing across the whole network. We also present GVG — an algorithm that uses greedy routing and void traversal to get out of local minima. The void traversal is based on each node storing the network topology of its neighborhood. The neighborhood size needs to meet a condition we call intersection semi-closure. Most practical geometric graphs meet this condition such that the storage requirements for each node are independent of the size of the network and rather small.

Paper organization. This paper is organized as follows. We give definitions and describe our notation in Section 2. We present our void traversal algorithm in Section 3. In Section 4 we describe how this algorithm can be used for geometric routing. We conclude the paper in Section 5 where we consider the efficiency and implementation of geometric routing with our algorithm.

2 Preliminaries

Notation. We model a sensor network as a geometric graph. A geometric graph $G = (V, E)$ is a set of nodes (vertices) V on a Euclidean plane connected by edges E. The number of nodes is $n = |V|$. Such graph is planar if its edges intersect only at vertices. **Void** is a region on a plane such that any two points of this region can be connected by a curve that does not intersect any of the edges of the graph. A boundary of a void contains the segments of the edges adjacent to the void. In every graph there is one unbounded external void. A void in a planar graph is face. Observe that the boundary of a face forms a simple cycle. Moreover, each edge of a planar graph borders at most two faces. An edge of a non-planar graph may contain the segments of the borders of arbitrarily many faces.

Neighborhood $N(u)$ of a node v is a subgraph of G. A neighborhood relation $N(G)$ over graph G associates each vertex of V with a subgraph of G. Denote $(u, v) \in E$ an edge between nodes u and v. Denote $\text{path}(u, v)$ a path from u to v. Denote also $|u, v|$ the Euclidean distance between u and v.

Intersection semi-closure.

Definition 1 A neighborhood relation $N(G)$ over a geometric graph G is d-incident edge intersection semi-closed (or just d-intersection semi-closed) if, for every two intersecting edges (u, v) and (w, x), either:

- there exist $\text{path}(u, w)$, $\text{path}(u, x)$, either one no more than d hops and (w, x), $\text{path}(u, w)$ and $\text{path}(u, x)$ belong to $N(u)$; or

- there exist $\text{path}(v, w)$, $\text{path}(v, x)$, either one no more than d hops and (w, x), $\text{path}(v, w)$, $\text{path}(v, x)$ belong to $N(v)$.

The attractive feature of the intersection semi-closed neighborhood relation is that for any edge (u, v), the information about every edge that intersects (u, v) as well as how to reach such edge is contained in the union of $N(u)$ and $N(v)$. Observe that for a particular graph, depending on the value of d, such a relation may not exist. However, for any graph there always exists a n-incident edge semi-closed relation.

To illustrate Definition 1, we apply it to unit-disk graphs. **Unit-disk graph** is a geometric graph where two nodes u and v are connected by an edge if and only if $|u, v| \leq 1$.
Lemma 1 A neighborhood relation over a unit-disk graph is 2-intersection semi-closed if for every node \(u \) and every edge \((w, x)\) such that \(|u, w| \leq 1\) and \(|u, x| \leq 2/\sqrt{3}\) it follows that \((u, w) \in N(u)\).

Proof: By definition \(N(G) \) is 2-intersection semi-closed if for every edge \((u, v)\) and every edge \((w, x)\) intersecting \((u, v)\), and the route to \(w \) and \(x \) are either in \(N(u) \) or \(N(v) \). These routes are no longer than 2 hops.

Let \(N(u) \) and \(N(v) \) be according to the conditions of the lemma. Since \(G \) is unit-disk, if \(|u, w| \leq 1\) and \(|u, x| \leq 1\) then \((u, w) \in E\) and \((u, x) \in E\). According to the conditions of the theorem both of these edges as well as \((w, x)\) itself belong to \(N(u) \). If this is the case, then both the route to the endpoints and the edge itself belong to \(N(u) \). Moreover, these routes are at most 1-hop long. Hence, the definition of intersection semi-closure is satisfied. Similar argument applies to \(v \).

Suppose that \(|u, x| > 1\) and \(|v, z| > 1\). Refer to Figure 1 for illustration. Since \((w, x)\) intersects \((u, v)\), \(x \) could not be further away from \((u, v)\) than 1. Hence, \(|u, w| < 1\) and \(|v, w| < 1\). Since \(G \) is unit-disk, \((u, w) \in G\) and \((v, w) \in G\). By the conditions of the lemma \((u, w) \in N(u)\) and \((v, w) \in N(v)\). Suppose that \(x \) is closer to \(u \) than to \(v \). Then, the distance between \(x \) and \(u \) is at most \(2/\sqrt{3}\). By the conditions of the lemma \((w, x) \in N(u)\). Which means that \(N(u) \) contains the edge \((w, x)\) and, since \(N(u) \) also contains \((u, w)\), \(N(u) \) contains the routes to both \(w \) and \(x \). Moreover, the path \((u, x)\) is just 2-hops long: \((u, w), (w, x)\). The argument for \(v \) is similar. The lemma follows.

Geometric routing. Consider a connected geometric graph \(G = (V, E) \), a neighborhood relation \(N(G) \) over it and a pair of nodes \((s, t) \in V\). Source \(s \) has a message to transmit to target \(t \). The source knows the coordinates of the target. The message may be transmitted via intermediate nodes. Each node may potentially add data to the transmitted message. In the sequel we ignore the payload of the message and assume that it contains only the routing information.

A routing algorithm specifies a procedure for intermediate node selection. A geometric routing algorithm with guaranteed delivery ensures the eventual message delivery under the following two constraints: each node receiving the message, selects the next node only on the basis of \(N(u) \) and the contents of the message it received; the message size is independent of network size. Observe that the nodes are not allowed to keep any information about the transmitted message after it has been forwarded.

3 Void Traversal Algorithm

Overview. The algorithm traverses an internal void clockwise following the segments of the edges that
comprise the border of the void. The external void is traversed counter-clockwise. Refer to Figure 2 for the illustration. Given an edge, for example \((d, h)\), that contains the segment of the void’s border, the algorithm has to select the next edge. For this the algorithm needs to determine the ends of the segment of \((d, h)\) that borders the void. One of the ends — \(e\) is the intersection of the previous edge \((a, j)\) and \((d, h)\). The other end — \(f\) is the point of the intersection of \((d, h)\) and another edge \((b, k)\) such that \(f\) is closest to \(e\) in the direction of the traversal of the void.

Recall that in the intersection semi-closed neighborhood relation, the union of the neighborhoods of \(d\) and \(h\) contains every edge intersecting \((d, h)\) as well as a route to this edge. Hence, to accomplish its objective the algorithm has to examine the neighborhoods of \(d\) and \(h\).

Details. The algorithm uses two types of messages: `edge_change`, and `edge_selection`. `edge_change` contains: previous edge, current edge and the direction of the traversal of the current edge. `edge_selection` message contains: previous edge, and suggested next edge.

When a node \(d\) receives `edge_change` message from node \(a\), it determines the intersection point \(e\) between the previous edge \((a, j)\) and the current edge \((d, h)\). Notice that the intersection point may be \(d\) itself. Then \(d\) examines \(N(d)\) to find the edge whose intersection point is the closest to \(e\) in the direction of traversal. This edge is the suggested next edge. Note that the graph is intersection semi-closed and \(N(d)\) may not contain some of some edges that intersect \((d, h)\). For example: \((b, k) \not\in N(d)\).

Hence, \(d\) selects \((c, i)\) as the suggested next edge. Edge \((c, i)\) intersects \((d, h)\) at point \(g\). If \(d\) does not find any edge that intersects \((d, h)\), it keeps the suggested next edge field empty. Node \(d\) sends `edge_selection` to the other node \(h\) incident to the current edge.

When node \(h\) receives `edge_selection` from \(d\), \(h\) compares the suggested next edge \((c, i)\) that \(h\) receives from \(d\) with the edges in \(N(h)\). If \(h\) finds an edge \((b, k) \in N(h)\) intersecting \((d, h)\) whose intersection point \(f\) is closer to \(e\) than \(g\), then \(h\) makes \((b, k)\) the suggested next edge. Otherwise, the suggested next edge remains the same. If neither \(d\) nor \(h\) find the suggested next edge in this manner, \(h\) considers the edges incident to itself. Node \(h\) selects the edge nearest to \((d, h)\) counter-clockwise.

Node \(h\) forms an `edge_change` message. This message contains \((d, h)\) as the previous edge and \((b, k)\) as the current edge. From the information contained in `edge_selection` that \(h\) receives from \(d\), \(h\) is able to determine the direction of the traversal of \((d, h)\). The traversal direction is included in `edge_change`.

After composing `edge_change`, \(h\) sends this message to either \(b\) or \(k\). Since the graph is intersection semi-closed, \(N(h)\) may not contain the route to either nodes. In this case \(h\) returns the message to \(d\) and \(d\) forwards it to the appropriate node.

The above discussion is summarized in the following theorem.

Theorem 1 The Void Traversal Algorithm correctly traverses an arbitrary void in a geometric graph with intersection semi-closed neighborhood relation.

4 Using Void Traversal to Guarantee Delivery

VOID-1 and VOID-2. The geometric routing algorithms we discuss are VOID-1 and VOID-2. They are rather straightforward extensions of algorithms FACE-1 and FACE-2 respectively. The latter two are planar graph geometric routing algorithms presented by Bose et al [1]. FACE-1 has a better worst-case performance. However FACE-2 is more efficient in practice. Hence, we describe VOID-2 in detail and mention briefly how VOID-1 is designed. Our algorithms are based on the following observation.

Proposition 1 Let \(p_1\) and \(p_2\) \(\neq p_1\) be two arbitrary points on the edges or vertices of a geometric graph. Let \(V\) be the void such that \(p_1\) lies on its border and the line segment \((p_1, p_2)\) intersects \(V\). The second point \(p_3\) where \((p_1, p_2)\) intersects the border of \(V\) is such that \(|p_3, p_2| < |p_1, p_2|\)

Both VOID-1 and VOID-2 sequentially traverse the voids that intersect the line \((s, t)\). Refer to Fig-
Figure 3: Example route of VOID-2.

Algorithm: VOID-2

\[p_1 \leftarrow s \]
\[p_2 \leftarrow t \]

\[\text{repeat} \]
\[/* \text{let } V \text{ be the void with } p_1 \text{ on its boundary that intersects } (p_1, p_2) */ \]
\[\text{traverse } V \text{ until reaching an edge containing point } p_3 \]
\[\text{intersecting } (p_1, p_2) \]
\[p_1 \leftarrow p_3 \]
\[\text{until } p_1 = p_2 /* \text{target reached} */ \]

Figure 4: Pseudocode for VOID-2. VOID-2 uses void traversal to guarantee delivery.

Figure 3 for illustration. While traversing a void VOID-1 and VOID-2 look for an intersection point with line \((s, t)\). Observe that there may be multiple such points. For example, void \(V_2\) in Figure 3 has four such points. VOID-1 and VOID-2 differ in their actions when an intersection point is encountered. VOID-1 traverses the whole void, selects the intersection point that is closest to \(t\), moves the message to this point and switches to the traversal of the next void. For example, VOID-1 would traverse \(V_2\) completely and switch to \(V_4\). VOID-2, on the other hand, switches to the next void as soon as the first intersection point is found. The pseudocode for VOID-2 is given in Figure 4 and an example route that VOID-2 selects is shown in Figure 3.

On the basis of Theorem 1 and the discussion above we state the following.

Theorem 2 Given an arbitrary geometric graph, an intersection semi-closed neighborhood relation and an arbitrary pair of nodes in this graph, both VOID-1 and VOID-2 eventually deliver a message from the first node to the second.

GVG. As in GFG, void traversal is only needed for a message to leave a local minimum. Otherwise greedy routing can be used. Care must be taken to avoid a livelock when message returns to the same local minimum. GVG — the complete algorithm works as follows. The message is at first forwarded according to greedy routing. When a node discovers that it is a local minimum, it notes the distance to target and the routing switches to VOID-1 or VOID-2. The routing switches back to greedy if the distance to target is less than that of the local minimum. The process repeats if necessary. Observe that, according to Theorem 2, the delivery of a message by either VOID-1 or VOID-2 is guaranteed. Hence, either GVG eventually switches to greedy routing or delivers the message to the target. Hence the following theorem.

Theorem 3 Given an arbitrary geometric graph, an intersection semi-closed neighborhood relation and an arbitrary pair of nodes in this graph, GVG eventually delivers a message from the first node to the second in that pair.

5 Performance Estimate and Practical Use of Void Traversal

Let us compare the performance of GVG and GFG. The greedy part of both algorithms is the same, hence the performance difference appears only in the local minimum avoidance part. To enable face traversal GFG has to planarize the original topology while GVG uses this topology without modifications. In case of unit-disk graphs the performance of GVG is likely be comparable to that of GFG. GVG may have a slight advantage over GFG because the boundaries of voids are likely to lie closer to the \((s, t)\) segment.
than the boundaries of the faces of the planar subgraph. On the other hand, the path selected by GVG may be slightly more circuitous which offsets this advantage.

However, as we argued in the introduction, the propagation patterns of radio signals in radio networks cannot be easily represented by unit-disk graphs. To use GFG, the nodes have to conservatively discard their long edges so as to guarantee the resultant graph is indeed unit disk. This may lead to graph disconnection or increase in its diameter. GVG can route over such graphs without modifications. Hence, in this case GVG should be able to exhibit superior performance.

The routing advantage of GVG comes at a price of each node having to maintain information about a larger neighborhood. Lemma 1 shows that in case of unit-disk graphs this increase is not significant. We believe that this holds for arbitrary geometric graphs as well.

We are currently in the process of comparing the performance of GVG and GFG and verifying our conjectures.

References

