Skip to main content
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • R
  • S
  • T
  • U
  • V
  • W
Kent State University logo
  • Apply
  • Visit
  • Give Now
  • FlashLine Login
  • Calendars
  • Phone Directory
  • Maps & Directions
  • Search
Advanced Materials and Liquid Crystal Institute
Menu Search
  • About
    Close
    • About Overview
    • Director's Welcome
    • Our Legacy
    • International Liquid Crystal Society
  • People
    Close
    • People Overview
    • Leadership
    • Administrative
    • Staff
    • Postdoctoral Research Associates
  • Affiliated Faculty
    Close
    • Affiliated Faculty Overview
    • Materials Science Graduate Program
    • Aeronautics & Engineering
    • Anthropology
    • Architecture & Environmental Design
    • Biological Sciences
    • Chemistry & Biochemistry
    • Computer Science
    • Fashion
    • Mathematical Sciences
    • Nursing
    • Physics
    • Podiatric Medicine
    • Public Health
  • Become a Member
  • Facilities
    Close
    • Facilities Overview
    • Cleanroom Research and Prototyping Facility
    • Characterization Facility
    • Organic Synthesis Facility
    • Machine Shop
    • SAXS Facility
    • 3PNMF Facility
    • Related University facilities
  • News/Research
    Close
    • News/Research Overview
    • Newsletter Archive
  • Support
    Close
    • Support Overview
    • Donate to AMLCI
    • Ukrainian Scholar Support Fund
  • 60th Anniversary
    Close
    • 60th Anniversary Overview
    • 60th Anniversary
    • Materials Day 2024
    • Materials Day 2023
    • Materials Day 2022
    • Materials Day 2021
  • FlashLine Login
  • Calendars
  • Phone Directory
  • Maps & Directions
  • Search
  • Apply
  • Visit
  • Give Now
Live Chat
Dr. Yaorong Zheng

Yaorong Zheng

Chemistry & Biochemistry
Assistant Professor
Campus:
Kent
Contact Information
Email:
yzheng7@kent.edu
Phone:
330-672-2267
Personal Website: Zheng Research Group

Biography

Our research is primarily focused on the design and development of innovative metal-based chemical systems and their subsequent application in biological systems with a long-term goal of improving cancer therapy. Currently, cancer is the second leading cause of death in the United States, only behind cardiovascular disease, and it is projected to become the leading cause of death within 16 years according to American Society of Clinical Oncology. In 2013, approximately 0.6 million U.S. citizens died from cancer, and over 1.6 million U.S. citizens became new cancer patients. The number of new cases is expected to increase nearly 45% by 2030. So far, most types of cancer are still incurable, and development of effective cancer treatments remains at a slow pace. Since 1975, the survival rate for cancer patients has only increased by 3.4%. Several major issues account for the slow development of cancer therapy, including the limited efficacy of current therapeutics and the shortage of efficient drug delivery systems. Research in the Zheng lab will focus on developing chemical tools that can benefit cancer research with respect to these limitations. The tools we are working on are based on metal complexes.

Metal complexes play an important role in cancer therapy. Cisplatin, a platinum complex, was demonstrated to be effective in treating cancer in 1969. By virtue of cisplatin, testicular cancer became one of the few types of cancer that are curable, with the survival rate of patients with testicular cancer being greater than 90%. Cisplatin and its analogous, carboplatin and oxaliplatin, are currently FDA-approved anticancer drugs that are widely used in chemotherapy for cancer patients with testicular, ovarian, head and neck, lung, and colon cancer. About 50% of cancer patients with chemotherapy are treated with these platinum drugs. The development of new metal-based drugs is, however, very slow, with most of the research focusing on compounds that are similar to the FDA approved platinum species. Such a drug design strategy favors development of drugs with common intrinsic cytotoxicity and mechanisms to drugs currently in the clinics. Deviating from the traditional approach, we seek to develop novel tools for cancer research based on innovative rationally designed metal-based chemical systems with an emphasis on new applications that target important questions. Our work will focus on applying innovative metal-based chemical systems in combination with nanotechnology and cancer biology to provide new tools to address important issues in cancer research with a long-term goal of improving cancer therapy. 

Education

2011-2015: Postdoctoral Research Associate, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
2006-2011: Ph.D., Department of Chemistry, University of Utah, Salt Lake City, UT
2002-2006: B.S., College of Chemistry & Molecular Engineering, Peking University, Beijing, China

Publications

  • Zheng, Y.-R.; Suntharalingam, K.; Johnstone, T. C.; Lippard, S. J. Encapsulation of Pt(IV) Prodrugs within a Pt(II) Cage for Drug Delivery. Chem. Sci. 2015, 6, 1189.
  • Miller, M. A.; Zheng, Y.-R.; et al. Tumor associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat. Commun. 2015, 6, 8692.
  • Zheng, Y.-R.; Suntharalingam, K.; Johnstone, T. C.; Yoo, H.; Lin, W.; Brooks, J. G.; Lippard, S. J. Pt (IV) Prodrugs Designed to Bind Non-Covalently to Human Serum Albumin for Drug Delivery. J. Am. Chem. Soc. 2014, 136, 8790.
  • Zheng, Y.-R.; Lan, W.-J.; Wang, M.; Cook, T. R. Stang, P. J. Designed Post-Self-Assembly Structural and Functional Modifications of a Truncated Tetrahedron. J. Am. Chem. Soc. 2011, 133, 17045.
  • Zheng, Y.-R.; Zhao, Z; Wang, M.; Ghosh, K.; Pollock, J. B.; Cook, T. R.; Stang, P. J. A Facile Approach toward Multicomponent Supramolecular Structures: Selective Self-Assembly via Charge Separation. J. Am. Chem. Soc. 2010, 132, 16873.
  • Zheng, Y.-R.; Stang, P. J. Direct and Quantitative Characterization of Dynamic Ligand Exchange between Coordination-Driven Self-Assembled Supramolecular Polygons. J. Am. Chem. Soc. 2009, 131, 3487.

Awards/Achievements

  • 2012: Kathy and Curt Marble Cancer Research Award, Koch Institute Frontier Research Program, Massachusetts Institute of Technology
  • 2011: Young Investigator Award, Division of Inorganic Chemistry of the American Chemical Society
  • 2009: Chinese Government Award for Outstanding Self-financed Student Abroad
  • 2009: Graduate Research Fellowship, University of Utah
  • 2006: Dow Chemical First-Year Scholarships, Department of Chemistry, University of Utah
Advanced Materials and Liquid Crystal Institute

Street Address

1425 Lefton Esplanade
Kent, OH 44242


Mailing Address

800 E. Summit St.
Kent, OH 44242

Contact Us

330-672-2654 amlci@kent.edu
Contact Us
  • 330-672-3000
  • info@kent.edu

QUICK LINKS
  • Materials Science
  • Physics
  • Chemistry & Biochemistry
  • Biological Sciences
  • Mathematical Sciences
  • Aeronautics and Engineering
  • Anthropology
  • Architecture & Environmental Design
  • Brain Health Research Institute
  • Computer Science
  • Fashion
  • Public Health
  • facebook
  • instagram
  • youtube
  • linkedin
  • TikTok
  • X
  • snapchat
  • ...
Information
  • Accessibility
  • Annual Security Reports
  • For Our Alumni
  • For the Media
  • Health Services
  • Jobs & Employment
  • Privacy Statement
  • HEERF CARES/CRRSAA/ARP Act Reporting and Disclosure
  • Website Feedback
Kent State University logo
© 2025 Kent State University All rights reserved.